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Abstract--Transient effects of nucleation in steady and unsteady expansions of a vapor in metastable state 
are investigated in the relaxation time approximation (RTA). Three regions of nucleation with correspond- 
ing nucleation times are distinguished for general applications and the unsteady nucleation rate equation 
is explicitly displayed in each region using an asymptotic method. Applications to shock tube and nozzle 
experiments for the expansion of moist air show that transient nucleation effects on nucleation rates 
become more significant near saturation (in the validity of RTA) than near maximum nucleation rates. 
The position of the nucleation wave front, which corresponds to states of maximum nucleation, on particle 
paths and the flow field therein seem to be unaltered by transient nucleation effects except for expansions 
on those particle paths with cooling rates higher than 3°C/#s near the center of rarefaction waves in shock 
tubes. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Two-phase  flows with nonequil ibr ium phase transition are o f  fundamental  importance in science 
and technology.  They arise in very diverse fields such as atmospheric  physics, astrophysics, 
aerophysics,  nuclear, chemical and steam turbine technologies, rocketry,  etc. In all o f  these 
applications a vapor  in the metastable state acts as a source for the product ion  o f  condensat ion 
nuclei which grow into droplets during the nonequil ibrium transition f rom the vapor  to the liquid 
phase. The phenomenon  o f  product ion  o f  condensat ion nuclei by thermal fluctuations in the vapor  
phase itself is known as homogeneous  nucleation. The kinetics o f  homogeneous  nucleation reaching 
rapidly a steady nonequil ibrium state is described in detail by Zett lemoyer (1969), A b r a h a m  (1974), 
M c D o n a l d  (1963) and references therein. In general most  studies are devoted to the description 
o f  steady-state nucleation rate equations. This is because in ordinary experiments such as those 
encountered in cloud chambers  and supersonic nozzles the characteristic time of  nucleation is 
usually too short  to be considered. However,  for flows with very high cooling rates such as those 
o f  supersonic free-molecular jets transient effects become important .  Unsteady effects o f  nucleation 
were first considered by Zeldovich (1942). He even derived an equation for the unsteady nucleation 
rate, but  his estimate was only qualitative. A number  o f  investigators (e.g. Kant rowi tz  1951; 
Probstein 1951; Wakeshima 1954; Collins 1955; Cour tney  1962; Andr r s  & Boudar t  1965; Feder et  

al. 1966) considered the relaxation to steady-state and obtained expressions for the nucleation time 
lag in order  to determine the validity o f  steady-state rate equations. Only recently has Shneidman 
(1987) shown that  these relaxation rate equat ions are too simple to account  for the complex 
structure o f  the relaxation to steady,state. He even achieved a relatively simple expression for the 
relaxation o f  the unsteady nucleation to steady-state, but  this expression unfor tunately  relies on 
the choice o f  the initial size o f  incipient nuclei. 

In this study transient effects o f  nucleation in steady and unsteady expansions are investigated 
in the relaxation time approximat ion  (RTA) of  the nucleation rate equation. Despite the fact that  
the R T A  is not  valid in the initial nucleation period, initial nucleation rates are vanishingly small 
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so that they can hardly influence the asymptotic behavior of  the RTA which is valid at later times. 
During the expansion (compression in the case of  retrograde fluids) of  the vapor in the metastable 
state, three distinct regions of  nucleation are distinguished and the unsteady nucleation rate 
equation together with the characteristic nucleation times are exhibited in each region in the 
relaxation time approximation using an asymptotic method. Conditions under which steady-state 
nucleation rates are reached are also displayed in each region during the expansion. The results 
are then applied to the experiments in shock tubes and nozzles. It is demonstrated that for these 
experiments transient effects become more important as the initial stage of nucleation is 
approached. No influence on the gas dynamical behavior was found for expansions with cooling 
rates where measurements are possible. The influence of the transient effects on the position of the 
nucleation wave, constructed from states of  maximum nucleation, and on the flow variables therein 
could only be observed for expansions with very high cooling rates ( >  3°C/ps) in the shock tube 
experiments along particle paths very close to the center of  the rarefaction wave where measure- 
ments are practically impossible. 

2. S T E A D Y - S T A T E  N U C L E A T I O N  RATE E Q U A T I O N S  

It is well known that the crucial point in describing the steady-state current or nucleation rate 
J~ is the determination of Gibbs formation energy AG~ for the creation of  a cluster of  size i (i-mer). 
In the metastable state of  the vapor, AG~ shows a maximum AG* at the critical size i = i*. By the 
stability criterion only clusters exceeding the critical size can grow. It can further be deduced that 
mainly clusters of  critical size contribute to the expression of  steady-state nucleation rate. Assuming 
that clusters and the surrounding vapor  have the same temperature T ' ,  the isothermal steady-state 
nucleation rate (Js)isothermat is given by 

( Js)isothermal = Z O * n  * [1] 

In [1] n* is the equilibrium number density of  clusters of  critical size (proportional to the factor 
e x p [ - A G * / k T ' ]  where k is Boltzmann's constant), D* is the rate of  molecular impact on the 
surface of  a cluster of  critical size given by the kinetic expression 

p; 
D * - s* [2] 

x/2nm I k T '  

where p ~ denotes the vapor pressure, m~ is the mass of  a single vapor  molecule and where s* denotes 
the surface area of  a critical cluster, and Z is the nonequilibrium Zeldovich factor defined by 

1 (02AG;~ 
Z -  2~kT'\ Oi z ]~=,.' [31 

I f  the Gibbs formation energy of an i-mer is expressed by 

AG~ = - i k T '  ln S + tr's~ [4] 

where S -  P v/P'~ ( T ' )  denotes the supersaturation with p~  ( T ' )  corresponding to the saturation 
pressure at T ' ,  s; is the surface area of  an i-mer and where tr' is the surface tension, we recover 
the classical nucleation equation (Farkas 1927; Becker & D6ring 1935; Volmer 1939; Zeldovich 
1942; Frenkel 1946). If, in addition, the translational and rotational contributions are taken into 
account in [4], we end up with the steady-state nucleation rate equation of  Lothe & Pound (1962) 
which yields nucleation rates far off by orders of  magnitude from those predicted by the classical 
nucleation equation. I f  [4] for Gibbs formation energy is replaced by Fisher's expression (1967) 
together with the surface tension correction for small clusters, we obtain the Dil lmann-Meier  rate 
equation (1991). A more refined and self-consistent theory by Delale & Meier (1993) accounts in 
addition for the deviation of the surface area of  a cluster from its geometric value. The last two 
steady-state nucleation equations have been shown to compare reasonably well with experimental 
measurements for a variety of  substances over a wide range of temperatures. An alternative 
self-consistent theory is also available from the work of Kal ikmanov & van Dongen (1995). 
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All of  the above mentioned steady-state nucleation rate equations neglect the heating up of the 
cluster by impinging molecules. Feder et al. (1966) have demonstrated that this effect can simply 
be taken into account by multiplying the isothermal steady-state equation [1] by a correction factor 
q~ (for water vapor this factor is approximately 1/5). Thus all of  the steady-state nucleation rate 
equations together with the nonisothermal correction of  Feder et al. (1966) can now be written as 

J~ = ~ Z D * n * .  [5] 

In particular when we exploit the fact that n* is proportional to e x p [ -  A G * / k T ' ] ,  we can cast [5] 
into the normalized form 

s~ 
' K B ( p v ,  T ' ) ]  J s  - ~-7 = E ( p v ,  T ' ) e x p [  - -  - '  ' [6] 

where ( '  is a normalization constant chosen such that Z(p~, T ' )  is of O(1) numerically and where 
K, called the nucleation parameter hereafter, and B, called the normalized activation function 
hereafter, are identified from the relation 

, t 
-i  , AG (Pv, T ' )  

K B ( p v ,  T ' )  = k T '  [7] 

in such a way that B = O(1) numerically over the range where nucleation rates are appreciable (for 
explicit expressions for K and B of  [7] in the classical nucleation theory, see Delale et al. 1993, 1995). 
In particular, as the saturation line is approached, B --~ oo. Thus, we have Js = 0 at saturation. On 
the other hand, the relatively long time interval compared to expansion (compression) time for 
normal (retrograde) fluids required for nucleation to reach its peak value implies K<< 1. In what 
follows we employ the normalized form [6] with K<< 1 for the steady-state nucleation rate, 
independent of  any particular choice of nucleation theories. 

3. T R A N S I E N T  E F F E C T S  OF N U C L E A T I O N  

The steady-state nucleation rate equations discussed in the preceding section are valid only when 
all transient effects have disappeared from the system. In general these transient effects persist over 
a local relaxation time ~', called the nucleation time lag or induction time. During this period the 
formation of  clusters of  size i can be described by a kinetic equation of the Fokker-Planck type 
(e.g. see Zeldovich 1942) as 

O C '  6~J ' j ,  , , c~ (c~)  
Ot' 8i ' = -- D Co~  [8] 

where c'  = c'(i, t ' )  is the concentration of clusters of size i at a given time t', Co = co(i)  is the 
corresponding equilibrium concentration, J ' ( i ,  t ') is the unsteady nucleation rate of clusters of size 
i at t '  and D '  = D'( i  ) is the diffusion coefficient. It is well known that [8] tends to steady-state with 
a steady-state nucleation rate J~. 

Zeldovich (1942) was the first to study transient effects of nucleation by [8]. He even achieved 
an expression for the time lag. Unfortunately, it contained undetermined functions to be evaluated, 
thus his estimate was only qualitative. Wakeshima (1954) succeeded in finding an explicit expression 
for time lag, which is simple enough to be written as 

1 
4riD *Z z [9] 

where D* is given by [2] and Z is the Zeldovich factor defined by [3]. For  typical cloud chamber 
experiments Wakeshima's time lag estimate is of  the order of microseconds. The same order of 
magnitude estimates were also achieved by Kantrowitz (1951), Probstein (1951) and Collins (1955) 
which support Wakeshima's estimate given by [9]. It should, however, be mentioned that 
Wakeshima's estimate is not valid in the very initial period and consequently his form of decay 
to steady-state is too simplistic. A well-defined estimate of  time lag for the isothermal nucleation 
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equation was derived by Andr6s & Boudart (1965) employing the nucleation kinetic equation [8] 
in difference form. Feder et al. (1966) suggest that if one employs the expression 

1 

(Z ')isothermal - -  2D'Z2  [ 10] 

which differs from Wakeshima's expression of [34] by a factor of 2rt, one obtains time lag estimates 
in agreement with the results of Andr6s & Boudart (1965). Furthermore, they show how the 
nonisothermal time lag expression can be related to the isothermal one by simply dividing by the 
so-called nonisothermal factor q~, already introduced in [5]. Their final expression for the 
nonisothermal time lag r '  can be written as 

(17/)isothermal 1 
z'  - 4~ - 2q~D*Z 2" [11] 

Only recently has Shneidman (1987) shown from the solution of [8] that the decay to steady-state 
over the period z'  is more complex than the relaxation time approximation (RTA) employed by 
early investigators. His result in the leading term can be written as 

exp t ,12, 
for t '  > t; where t~ is some "incubation" time depending on the choice of the incipient nuclei. For 
t ' <  t~ the nucleation rate is practically zero. For sufficiently large times (e.g. t'>>t~) [12] 
approximates to the relaxation rate equation employed by previous investigators. Although [12], 
to the leading approximation, seems to describe the actual form of  decay of [8] to steady-state, it 
has the disadvantage that it relies upon the choice of the initial size of the incipient nuclei from 
which the incubation time t~ can be calculated. Furthermore, [12] is restricted to a fixed 
thermodynamic state of  the vapor since it is obtained from [8] for a fixed thermodynamic state of 
the vapor. In actual nucleation experiments the thermodynamic state of the vapor is continuously 
changing.t Nevertheless, aside from certain anomalies near the coexistence or saturation line, [12] 
can be successfully used to describe the initial nucleation period. For  times t'>>t~ [12] coincides 
with the relaxation time approximation (RTA), which in local form can be written as 

d J '  J~ -- J '  
- -  - - -  [131 
dt '  z '  

In [13] the time derivative d/dr '  is the material or total derivative during an expansion (we herein 
refer to normal fluid behavior. For retrograde fluids the word 'expansion' should be replaced by 
the word 'compression'). Although [13] is not valid near the initial nucleation period, i.e. for times 
t '  < t; and t '  = O(t;), nucleation rates there are vanishingly small to effect the validity of RTA, 
[13], for later times. Thus, except for the initial nucleation period, [13] can be conveniently applied 
to nucleation experiments since it takes into account changes in the thermodynamic state and flow 
conditions during such experiments. The choice of the initial condition for [13] follows from the 
fact that J~ = 0 at saturation. If we denote the time at which saturation is reached during the 
expansion by t~ (from now on subscript c refers to the saturation state), we have 

J ' = 0  at t ' = t ~  [14] 

for the initial condition of [13]. On the other hand, [13] is coupled to the expansion process through 
the thermodynamic coordinates p~ and T '  which enter the expressions for J~ and z'. Thus the 
solution of the relaxation rate equation [13] subject to the initial condition [14] demands the nature 
of the expansion process. For  most nucleation experiments the expansion is achieved in either 
unsteady flows (e.g. as in expansion cloud chambers or shock tubes) or steady flows (e.g. as in 
supersonic nozzle flows). In what follows we present the solution of [13] subject to the initial 
condition [14] depending on the unsteady or steady nature of the expansions in nucleation 
experiments. 

tin his work Shneidman (1987) has retained these effects as higher approximations, but only for changes in the height of 
the activation barrier AG*/kT' by introducing the quantity n = z'3/&' (AG*/kT'). 
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3. I. Unsteady expansions 
Before we consider the solution of  [13], we introduce the normalized variables 

t '  T' 

0,' O, 
[15] 

where O '  is some characteristic flow time for the expansion. We also define 

j /  p 

J - - -  Js - Js  [16] 
U'  ( '  

where ( '  is a conveniently chosen normalization constant for nucleation. Equation [13] now 
assumes the normalized form 

dJ Js--J 
dt z 

[17] 

subject to the initial condition J = 0 at t = re, whose solution can be immediately written as 

[_f' avl 
f f  exp J4 z(v)J 

J(t) = Js(t,) ~(t,) dtl [18] 
c 

along particle paths during expansions. Now using [6] for Js, we arrive at 

J ( t ) =  I 'Z(fi)exp[-K-'B(tl)l E (" dv -] 
- - -  d f i  exp J,  (v)J [19] 

where it is understood that the thermodynamic state of  the vapor, characterized by the relations 
p6 =p 'v( t )  and T ' =  T ' ( t )  at any time t along particle paths during an expansion, is known from 
the nature of  the expansion. The nucleation rate equation [19] along particle paths in an expansion 
is essentially influenced by the behavior of  the normalized activation function B. A typical time 
variation of  the activation function B along particle paths during an expansion is shown in figure 
1 where it is also compared with its virtual isentropic variation Bisentropic. It can clearly be seen that 
B is minimum at its turning point t -- h, which corresponds to a maximum nucleation rate, where 

Btyp i ta t  

J I isentropic 
I I1 I III  I 

I I 
I I 
I I 

tc tt ~t 
(x~) (x t) (x) 

F i g u r e  l .  Typ i ca l  h i s t o r y  o f  the  n o r m a l i z e d  ac t i va t ion  f u n c t i o n  B a l o n g  par t ic le  p a t h s  (t¢ a n d  x c deno te ,  
respectively, the time and position where saturation conditions are reached in, respectively, unsteady and 
steady expansions, h and xt are the corresponding time and position where the nucleation rate reaches 

its maximum value). 
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dB/dt =0. Since the nucleation parameter K<<I, we distinguish from the behavior of the 
normalized activation three distinct regions of nucleation (Regions I, II and III) along particle 
paths during an expansion. 

In Region I, dB/dt = O(1) numerically. Using Laplace's method (e.g. see Erdelyi 1956; Sirovich 
1971) in the limit as K--~ 0 where the essential contribution to the integral [19] arises from the end 
point minimum tj = t, we obtain the following asymptotic expression for the unsteady nucleation 
rate equation in Region I at any instant t along particle paths: 

J(t) = E(t)exp[ - K 1B(t)] [20] 

where 

{1 - exp[ - (1 4- r(t)/z*(t))(t - tc)/r(t)]} 
l~(t) = E(t) 

[l + ~(t)/~*(t)] 

with the normalized characteristic time for steady-state nucleation in this region given by 

[21] 

r*=_ _ K(dB~  ' \ ~ - j  [22] 

Region II is defined as the region where dB/dt = O ( K  ~/2) on measure K. In this region the 
nucleation rate still increases (dB/dt < 0), but at a slower rate until it peaks at the turning point 
of the activation function, which also marks the end of the region. Using Laplace's method for 
an end-point minimum as K ~ 0 in this region, we obtain the simple asymptotic expression for 
J(t) as 

J(t) = ~,(t)exp[ - K 1B(t)] [23] 

where E(t) is now given by 

with 

{ ~ /  n exp[AE(t)/(4C(t))] 
~.(t) = Z(t) C(t) z(t) 

xFer fc ( .  A ( t ) - ' ~ - e r f c (  C ~ ( t - t ~ ) 4  A ( t ) . ~ ] ~  
L \2  c ~ J  2 c ~ / j j  

[24] 

A (t) = 4- [25] 

l[ 1 de/d, 1 
C(t) = ~ ~ 4- z2(t ) _] [26] 

erfc denoting the complementary error function and where the characteristic time for steady-state 
nucleation of this region is defined by 

j,2/dZB\ 1/2 
z** ==- K ' i~f~)  [27] 

In particular as t ~ tt, T* ---* oo and we obtain the maximum nucleation rate Jmax = Jt where it is 
understood that subscript l denotes properties or functions evaluated at t = t~. Finally, we define 
Region III as that region where the nucleation rate starts to decrease from its maximum value and 
consequently where we have dB/dt > 0 (see figure 1). This region begins at t = tt along particle 
paths and ends at a point where nucleation has diminished for all practical purposes. Solving [17] 
subject to the condition J = J~ at t = tt and using Laplace's method now for an interior minimum, 
we obtain the asymptotic expression for the unsteady nucleation rate in the form 

J(t)= J~exp I - ( t  -tl)]zl _J 

x {1 + e r f [ v / ~ t ( t - t ~ ) -  A,/(2x//~t)] - erfc[x/~t(~--to) + A,/(2x/~t)] ~ [28] 

erfc[A,/(2V/-~t)] -- erfc[x/~l( t , -  tc) + A,/(2x/~)] J 



TRANSIENT EFFECTS OF NUCLEATION IN STEADY AND UNSTEADY CONDENSING FLOWS 773 

for t > tt along particle paths. It is worthwhile to mention that in [28], At and Ct are now respectively 
given by [25] and [26] evaluated at t = tt and erf and erfc, respectively, denote the error function 
and the complementary error function. Furthermore, it can easily be deduced from [28] that as 
t ~ h, J - -*J t  and as t ~ ~ ,  J---~ 0. 

Having exhibited the asymptotic expressions for unsteady nucleation rates in the distinct Regions 
I, II and III, it would be interesting to find out the validity of steady-state nucleation rates. In 
Region I it can easily be demonstrated from [21] that ~,(t) approaches E(t), thus nucleation rates 
approach steady-state along particle paths if, at each instant t, we can satisfy the conditions 

z(t)<<z*(t) and z ( t ) < < ( t - t c ) .  [29] 

The second condition is usually automatically satisfied in the RTA which holds for times larger 
than t¢. In Region II it can be deduced from [24] that time lag effects become unimportant whenever 
the conditions 

z(t) ~2 dz 
z**(t)/I  +-d-t <<1 and z(t)<<r*(t) [30] 

are satisfied at each instant t along particle paths. As t --* tt in this region, z * --* ~ .  Thus the second 
condition of  [30] is automatically satisfied. In particular at t = tt where the nucleation rate is 
maximum, unsteady effects are insignificant whenever 

de 
+ <<I. [31] 

It can further be shown that [31] also exhibits the condition for the validity of steady-state 
nucleation theory in Region III along particle paths in unsteady expansions. 

3.2. Steady expansions 

In steady expansions of nucleating flows, which are usually encountered in supersonic nozzles 
and wind tunnels, we first note that the relaxation rate equation [13] assumes the form 

d J '  J~ -- J '  
dx ~ - L ~  [32] 

with 

L '  = u ' z '  [33] 

where x '  is a characteristic streamwise coordinate (or axial coordinate in one-dimensional flows), 
u' is the local flow speed and z '  is the time lag for nucleation. The length L '  given by [33] is a 
measure of  a characteristic local length over which unsteady effects prevail. This length will be 
referred to as the nucleation distance lag or the nucleation induction distance. Carrying out the 
normalization for nucleation rates given by [16] together with the introduction of the normalized 
variables 

x '  L" 
x = 7 7  and L ~  l '  [34] 

where 1' is a characteristic flow length, we obtain the relaxation differential equation 

dJ J s - J  
- - -  [ 3 5 ]  

dx L 

subject to the initial condition J = 0 at x = xc (subscript c herein also refers to saturation 
conditions). It is obvious from [35] that unsteady nucleation rates completely relax to steady ones 
( J - - - ' J s )  as L - * 0 ,  which corresponds to r'----~0. The solution of [35] subject to vanishing 
nucleation rate at saturation can now be written as [_fx l 

fx 
: exp J~,, L(~)_] 

J ( x )  = ~,(x~ )exp[ - K - l B ( x  I )] dx~. [36] 
o L ( x l )  
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Similar to the procedure of unsteady flows, the integral of [36], as K--~ 0, is dominated by the 
behavior of the normalized activation function whose variation along the streamwise coordinate 
x is shown in figure 1. Once again we can distinguish three distinct regions. Region I is defined 
as that region where dB/dx = O(1) numerically, Region II is defined as the region where 
dB/dx = O(K m) and Region III is defined as that region where the nucleation rate decreases 
(dB/dx > 0) in contrast to Regions I and II where the nucleation rate increases (dB/dx < 0). The 
point x = xt, which marks the end of Region II, again corresponds to the point where the 
nucleation rate is maximum. If we define the characteristic steady-state nucleation lengths L*(x) 
and L**(x) of Region I and II by 

_ K(dB"  ] 1 
L *(x) = \ dx  ] [37] 

and 

1 , 2 / d 2 B ' ~  t,,2 
K [38] 

the asymptotic expressions for the nucleation rates in Regions I, II and III are exactly those given, 
respectively, by [20]-[28] provided that the time coordinate t is replaced by the streamwise 
coordinate x and the following correspondence is strictly observed: 

and 

r(t)~--~ L(x)  

z*(t) ~ L*(x) 

**(t) *-+ L **(x). 

The conditions in each region, under which steady-state nucleation rates are valid, can then be 
obtained from [29]-[31] by observing the above correspondence between time and length variables 
strictly. 

4. A P P L I C A T I O N S  TO C O N D E N S I N G  SHOCK TUBE AND N O Z Z L E  FLOW 
E X P E R I M E N T S  

In this section we apply the results of the previous section for unsteady and steady expansions 
of  water vapor with a carrier gas in shock tubes and nozzles to determine the transient effects of 
nucleation quantitatively. Although it is well known (e.g. see Kotake & Glass 1981) that, for the 
available measured data typical of such experiments, the transient effects of nucleation do not affect 
the gas dynamical behavior (the quasi-steady assumption), it is interesting to compare the steady 
and unsteady nucleation rates and the characteristic times in distinct nucleation regions. Further- 
more, the transient effects of nucleation on the gas dynamical behavior (in particular, on the flow 
field near maximum nucleation rates) can be studied theoretically in the shock tube experiments 
along particle paths having very high cooling rates where measurements are practically impossible. 

As an example of  unsteady expansions, we consider the homogeneous nucleation of water vapor 
in the rarefaction wave of  a shock tube whose wave diagram is shown in figure 2. As the mixture 
of water vapor and carrier gas (air), which for time t '  < 0 is at rest in the driver section (region 
4 in figure 2) with initial relative humidity q~4, initial specific humidity 0) 4 and initial temperature 
T~, expands into the channel (Region 1 in figure 2) after the rupture of the diaphragm, the water 
vapor is cooled in metastable state where homogeneous nucleation sets in until condensation 
becomes visible at high supersaturation ratios due to significant number of droplets formed (onset 
of condensation). The curve EF in the x ' - t '  diagram of figure 2, called the nucleation wave front, 
corresponds to states where maximum nucleation rates are reached along different particle paths. 
The waves emanating from the center O of  the rarefaction wave remain almost straight as long 
as they do not cross the nucleation wave front EF; however, as they cross the nucleation wave front 
EF, they begin to curve appreciably towards the head of the rarefaction wave due to substantial 
latent heat release by condensation. The curve OMP in figure 2 shows such a typical wave. 
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Figure 2. Wave diagram for shock tube flows with homogeneous condensation (OH and OT are, 
respectively, the isentropic head and tail of  the rarefaction wave travelling to the left, OD is the shock 
wave travelling to the right, OC is the contact surface, OS is the wave along which saturation conditions 
are reached, EF is the nucleation wave front defined as the locus of  states of  maximum supersaturation 
or maximum nucleation rate, the dashed line is a typical particle path originally located at x~, Regions 

4 and 1 correspond to the initial states of  the driver section and of  the channel, respectively). 

Homogeneous nucleation practically sets in along a particle path (dashed line in figure 2 initially 
located at x~) as soon as it crosses the saturation wave OS. At point K, where the particle path 
meets the nucleation wave front, the nucleation rate reaches its maximum value Jmax = Jr. The 
nucleation rate then decreases along KP until it completely diminishes. We herein investigate the 
transient effects of  nucleation on the nucleation rate as well as on the position of the nucleation 
wave front EF and on the flow variables therein. For this reason we choose to consider these effects 
along particle paths where measured data are available (e.g. Barschdorff 1975), which unfortunately 
show relatively low cooling rates, as well as along those particle paths with very high cooling rates 
close to the center O where measurements are practically impossible. In determining the state of 
the vapor (p~, T') along the particle path and in constructing the nucleation wave front, it is 
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Figure 3. Variation of  the time lag expression given by [11] along different particle paths in the shock tube 
experiments of  Barschdorff (1975) for the expansion of  moist air (S denotes the supersaturation with 
maximum value S , x ;  initial driver conditions are: mixture pressure p~ = 790.6 Tort, partial vapor pressure 
(P~)4 = 4.3 Tort  and mixture temperature T~ = 297.2 K; the calculated value of  the nucleation parameter 
is K = 0.875 x 10-5). (a) Expansion along particle path initially at x~ = - 5 cm; (b) expansion along 

particle path initially at x6 = - 2 0  cm; (c) expansion along particle path initially at x~ = - 4 0  cm. 
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Figure 4. Ratio of steady-state to unsteady nucleation rates in Barschdorff's shock tube experiments (1975) 
under the conditions stated along a particle path initially at x6 = - 20 cm corresponding to curve b of 

figure 3 (S denotes supersaturation with maximum value Smax). 

impor tan t  that  a precise gas dynamical  solution is used. We therefore use the recent asymptotic  
solution o f  Delale et  al. (1995). Furthermore,  we employ the classical steady-state nucleation theory 
discussed in section 2 together with the Her t z -Knudsen  law for the growth of  critical nuclei into 
droplets (this latter law is needed for the construct ion o f  the nucleation wave front EF. Details 
o f  normalizat ion o f  the nucleation and growth laws together with the thermodynamic  properties 
used can be found in Delale et  al. 1995). For  the time lag expression, we use that given by [1 l] 
together with the value ~ = 1/5 for water vapor  suggested by Feder et  al. (1966). Figure 3 shows 
typical orders o f  magni tude for the nucleation time lag z '  given by I1 l] along different particle paths 
(curves a, b and c) during the expansion of  moist air in the experiments o f  Barschdorff  (1975). It 
can clearly be seen that  z '  changes by orders of  magnitude during the expansion along any o f  the 
particle paths. While z '  is o f  the order  o f  milliseconds near saturation (S = l . l ) ,  it decreases to the 
order  o f  microseconds near the peak of  nucleation (S = Sma  x ) .  This suggests that  transient effects 
on the nucleation rate are less significant as maximum nucleation rates are approached along 
particle paths. This fact is also demonst ra ted  in figure 4 during the expansion along a particle path 
where the ratio o f  the steady-state to the unsteady nucleation rates is shown. The difference 
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Figure 5. Comparison of the ratios of the time lag z to the characteristic times z* and z** of Regions 
I and II in Barschdorff's shock tube experiments (1975) under the conditions along a particle path initially 
at x~ = --20 cm corresponding to curve b of figure 3 (S denotes supersaturation with maximum value 
Smax). (a) Variation of log,0 z/z * along the particle path; (b) variation of log~0 z/z ** along the particle path. 
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Table 1. The effect of nucleation time-lag on the flow 
variables at maximum nucleation in the classical nucle- 
ation theory for the expansion of moist air along a 
particle path originally at x~ = - 4 mm in Barschdorff's 
experiments (1975) with initial driver section conditions 

given in figure 3 

Steady-state Unsteady 
Flow variables nucleation nucleation 

p~ (Pa) 24771 24523 
T~ (K) 196.57 196.01 
u~ (m/s) 323.3 325.3 
t~ (/~s) 40.01 40.36 
J: (m-3s -I) 4.41 x 1026 4.15 x 1026 
S t = S~x 495.3 525. I 

becomes almost  negligible near the max imum nucleation rate. Typical variations o f  the ratios o f  
time lag z to the characteristic nucleation times z* and z** o f  Regions I and II  during an expansion 
along the same particle path are also exhibited in figure 5. The posit ion o f  the nucleation wave 
front  and the gas dynamical  variables therein, as expected, seem to be unaltered by transient effects 
o f  nucleation during the expansion along particle paths initially located at x~ = - 5 ,  - 2 0  and 
- 4 0  cm (having cooling rates o f  0.28, 0.07 and 0.04°C//~s, respectively). In order to be able to 
observe the influence o f  nucleation time lag on the flow field near max imum nucleation rates under  
the same initial driver section conditions, one should really consider expansions along those particle 
paths with very high cooling rates. Al though it is possible to achieve the desired cooling rates on 
particle paths very close to the center O, no measurement  is practically possible along these particle 
paths. Nevertheless, the informat ion gained f rom such theoretical calculations can show when 
transient effects o f  nucleation begin to influence the position o f  the nucleation wave front  and the 
flow variables therein under  the same initial conditions. For  this reason we consider the expansion 
along a particle path initially at x~ = - 4 m m  with a high cooling rate o f  3°C//~s, where the 
transient effects o f  nucleation begin to influence the position o f  the nucleation wave front  and the 
flow variables therein. A compar i son  o f  the flow variables at max imum nucleation rates using the 
classical steady-state and the corresponding unsteady nucleation rate equations under  the same 
initial driver section condit ions (stated in figure 3) is shown in table 1. The transient effects seem 
to result in a delay for the posit ion o f  the nucleation wave front  on the particle path with a slight 
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778 c . F .  DELALE and G. H, SCHNERR 
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Figure 8. Geometric configuration of a circular arc nozzle with throat height 2y* and circular arc 
radius R*. 

decrease in the temperature and pressure therein. There is a slight increase in the maximum 
nucleation rate despite a noticeable increase in the maximum supersaturation ratio. The ratio of  
the steady-state to unsteady nucleation rates along the same particle path is plotted in figure 6. 
This also shows that transient effects on nucleation rates are more appreciable as saturation is 
approached, a typical behaviour reached on all particle paths. The ratios of the time lag r to the 
characteristic times of  nucleation in Regions I and II along the same particle path are also exhibited 
in figure 7. All of  these results demonstrate that, for the specified initial driver section conditions, 
transient effects of nucleation would begin to influence the position of the nucleation wave front 
and the flow variables therein only along those pathlines having cooling rates greater than 3°C/#s. 

To determine transient effects of  nucleation in steady expansions, we choose to work with 
one-dimensional steady condensing nozzle flows for which a precise asymptotic theory by Delale 
et al. (1993) is available. We consider the expansion of moist air with reservoir temperature T~, 
reservoir specific humidity 09o and reservoir relative humidity tp0 in a converging~liverging circular 
arc nozzle, whose geometric configuration is shown in figure 8. The water vapor reaches the 
saturation state in the converging section and maximum nucleation rates are achieved during the 
transonic expansion of  the vapor in metastable state. We investigate transient nucleation effects 
on steady-state nucleation rates as well as on the position of the nucleation wave, constructed from 
states of  maximum nucleation, and the flow field therein. We once more use the nonisothermal 
classical steady-state nucleation equation given by [5] together with the Hertz-Knudsen droplet 
growth law and the time lag expression given by [11]. Details of  the method together with the 
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Figure 9. Variation of  the characteristic length scale L '  
defined by [33], where the time lag z '  is given by [I 1], along 
the nozzle axis in Schnerr 's experiments (1989) for moist  air 
expansions with fixed reservoir conditions: temperature 
T~ = 295.6 K, specific humidity m0 = 6.5 g/kg, relative hu- 
midity tp 0 = 0.38 and with fixed throat  height 2y* = 30 mm,  
but  variable circular arc radius R* yielding different expan- 
sion rates (AB corresponds to an expansion rate with 
R * = 4 0 0 m m  and with supersaturations SA =2.52  and 
S B - - S , ~  = 66.5; A'B'  corresponds to an expansion rate 
with R* = 300 m m  and with supersaturations Sa, = 2.52 and 
S~r = S ~  = 71.0; A"B" corresponds to an  expansion rate 
with R* = 2 0 0 r a m  and with supersaturations SA,,=2.60 
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Figure 11. Comparison of the ratios of the distance lag L to the characteristic lengths L* and L** of 
Regions I and II in Schnerr's nozzle experiments (1989) under the conditions stated in figure 7 along the 
$2 nozzle axis with R*= 400 mm and 2y* = 30 mm corresponding to the expansion AB in figure 7 (S 
denotes supersaturation with maximum value Sm~ ). (a) Variation of logt0 L/L * along the nozzle axis; (b) 

variation of log~0 L/L** along the nozzle axis. 

thermodynamic properties employed can be found in Delale et al. (1993). Figure 9 shows typical 
magnitudes of  the distance lag L ' ,  defined by [33], for the expansion of  moist air with reservoir 
conditions ~00=0.38, o~0= 6.5 g/kg, T~ = 2 9 5 . 6 K  in nozzles having the same throat height 
(2y* = 30 ram), but with different radii corresponding to different expansion rates (expansions AB,  

A 'B'  and A"B",  where points B, B'  and B" correspond to states of  maximum supersaturations, 
are achieved in nozzles with circular arc radii R * =  400, 300 and 200 mm having approximate 
cooling rates of  0.3, 0.35 and 0.43°C/ps, respectively). The higher values of  L '  achieved near 
saturation (points A, A'  and A") suggest that transient effects are more significant near saturation. 
Figure 10 shows the variation of  the ratio of  steady to unsteady nucleation rates under the same 
reservoir conditions in the circular arc nozzle with throat height 2y* = 30 mm and R* = 400 mm 
(expansion A B  in figure 9). This confirms that transient effects on nucleation rates are more 
significant near the saturation state rather than near maximum nucleation. The variations in the 
ratios of  the normalized nucleation distance lag to the characteristic lengths L* and L** of  Regions 
I and II, given, respectively, by [37] and [38], are also plotted along the axial nozzle coordinate 
in figure 11. The position of the nucleation wave, constructed from states of  maximum nucleation, 
and the flow variables therein seem to be unaltered by transient nucleation effects. This 
demonstrates the fact that much higher cooling rates than the ones encountered herein 
(0.3~3.43°C/ps) are needed for an observable change in the position of  the nucleation wave and 
the flow field therein. 

5. C O N C L U S I O N S  

In this investigation we have studied transient effects of nucleation on steady-state nucleation 
rates in both steady and unsteady expansions of  a vapor in the metastable state using the relaxation 
time approximation (RTA). From the general behavior of Gibbs formation energy for the creation 
of  condensation nuclei of  critical size along particle paths, we distinguish three regions of  nucleation 
with different characteristic times (or characteristic lengths in steady expansions). In each region 
the asymptotic expressions for unsteady nucleation rates are given explicitly and the conditions 
under which transient nucleation effects become unimportant (domain of  validity of the steady- 
state nucleation rates) are displayed. Using the classical steady-state nucleation rate equation 
together with the asymptotic method for nonequilibrium condensation by Delale et al. (1993, 1995), 
we investigated the influence of  transient nucleation effects in shock tube experiments of 
Barschdorff (1975) and nozzle experiments of  Schnerr (1989) for the condensation of  water in moist 
air. For  these experiments we find that transient effects on nucleation rates seem to be more 
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significant as saturation is approached within the validity of RTA. In the expansions along particle 
paths in the rarefaction wave with initial driver section conditions corresponding to those in the 
experiments of  Barschdorff (1975), we find along particle paths with relatively low cooling rates 
(0.04-0.28°C/#s) that the position of nucleation wave front (constructed from those states with 
maximum nucleation rates) and the flow field therein remain essentially unaltered by transient 
nucleation effects. On the other hand, along particle paths with high cooling rates (e.g. of the order 
of  3°C//~ s or higher) which lie close to the center O where measurements are practically impossible, 
we theoretically find that transient effects of nucleation begin to influence the position of the 
nucleation wave front and the flow field therein resulting in a delay for the position of the 
nucleation wave front and thereby, a decrease in the pressure and temperature therein. For the 
nozzle experiments of Schnerr (1989) with cooling rates in the range of 0.30-0.43°C//~s under 
atmospheric supply conditions, we find that the position of the nucleation wave and the flow field 
therein are essentially unaltered by transient effects of nucleation. 

The results presented in this paper show that transient effects of nucleation may influence the 
macroscopic flow field depending on working fluid and initial conditions, particularly for those 
expansions with very high cooling rates. Furthermore, when sufficient data for such expansions 
become available, one can use the asymptotic expressions of the distinct nucleation regions 
obtained in this article by RTA for the unsteady nucleation rate equation in order to establish a 
practical criterion as to when transient effects of nucleation are likely to be important. The transient 
effects of nucleation can also be examined by employing different steady-state nucleation theories. 
Finally, the asymptotic theory presented herein can be compared with the results of direct 
molecular simulations (e.g. Monte Carlo methods). 
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